9.1 Parametric Curves

So far we have discussed equations in the form \(y = f(x) \). Sometimes \(x \) and \(y \) are given as functions of a parameter.

Example. Projectile Motion

\(\langle \text{Sketch } x \text{ and } y \text{ axes, cannon at origin, trajectory} \rangle \)

Mechanics gives \(x(t) \) and \(y(t) \). Time \(t \) is a parameter. ■

Given parameter \(t \). Then

\[
\begin{align*}
x &= f(t), \quad y = g(t)
\end{align*}
\]

are parametric equations for a curve in the \(xy \)-plane.

Example. \(x = 2 - t, \quad y = 3 - 2t \)

Draw the curve in the \(xy \)-plane.

\[
\begin{array}{ccc}
t & x & y \\
0 & 2 & 3 \\
1 & 1 & 1 \\
2 & 0 & -1
\end{array}
\]

\(\langle \text{Sketch axes and line in } xy \text{-plane} \rangle \)

Eliminate \(t \)

\[
\begin{align*}
t &= 2 - x \\
y &= 3 - 2(2 - x) \\
y &= 2x - 1
\end{align*}
\]

Example \(x = r \cos(\theta), \quad y = r \sin(\theta) \) where \(0 \leq \theta \leq \pi/2 \)

\[
\begin{array}{ccc}
\theta & x & y \\
0 & r & 0 \\
\pi/6 & \frac{\sqrt{3}}{2} r & \frac{1}{2} r \\
\pi/4 & \frac{\sqrt{2}}{2} r & \frac{\sqrt{2}}{2} r
\end{array}
\]
\[
\frac{\pi}{3} \quad \frac{1}{2}r \quad \frac{\sqrt{3}}{2}r \\
\frac{\pi}{2} \quad 0 \quad \frac{r}{r}
\]

\[\langle 0 \ldots r \ldots x-, 0 \ldots r \ldots y-, \text{plot points, draw portion of circle with arrow, show } \theta \rangle\]

Parameter is the angle \(\theta \).

Eliminate \(\theta \)

\[\cos(\theta) = \frac{x}{r}, \quad \sin(\theta) = \frac{y}{r}\]

\[
\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1
\]

Gives the first quadrant portion of a circle of radius \(r \). ■

Example. \(x = \tan(\theta), \quad y = \sec(\theta), \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)

\[
\tan^2(\theta) + 1 = \sec^2(\theta)
\]

\[x^2 + 1 = y^2\]

\[y^2 - x^2 = 1\]

hyperbola with asymptotes \(y = \pm x \)

\[\langle \text{sketch } xy\text{-axes, asymptotes, hyperbola} \rangle\]

\[-\frac{\pi}{2} < \theta < \frac{\pi}{2}\]

\[-\infty < x = \tan(\theta) < \infty\]

\[y = \sec(\theta) > 0\]

parametric equations describe the top branch of the hyperbola ■

A **cycloid** is a curve traced by a point on the rim of a rolling wheel.

\[\langle \text{sketch wheel, wheel rolled about a quarter turn ahead, portion of cycloid} \rangle\]

Find parametric equations
circle has radius r

$P(x, y)$ a point on the cycloid

$|OT| = r\theta$ length of arc PT

$|PQ| = r \sin (\theta)$

$|QC| = r \cos(\theta)$

$x = |OT| - |PQ| = r(\theta - \sin(\theta))$

$y = |TC| - |QC| = r(1 - \cos(\theta))$

Parametric equations for cycloid

$x = r(\theta - \sin(\theta))$

$y = r(1 - \cos(\theta))$

Table

<table>
<thead>
<tr>
<th>θ</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π</td>
<td>πr</td>
<td>$2r$</td>
</tr>
<tr>
<td>2π</td>
<td>$2\pi r$</td>
<td>0</td>
</tr>
</tbody>
</table>

(sketch xy-axes, plot points, draw curve through them)

one arch of the cycloid

Drawing Graphs of Parametric Equations using Maple

Command form: plot([x-expression, y-expression, parameter range],scaling=constrained);

(show graph of parametric equations)
9.2 Calculus with parametric curves

Tangents

Curve \(C \) in \(xy \)-plane described by parametric equations

\[
x = f(t)
\]
\[
y = g(t)
\]

Chain rule

\[
\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}
\]

\[
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)}
\]

This gives the slope of curve \(C \)

Let \(y' = dy/dx \)

\[
\frac{dy'}{dx} = \frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}
\]

This gives the concavity of the curve \(C \)

Example \(x = \tan(\theta), \ y = \sec(\theta), \ -\frac{\pi}{2} < \theta < \frac{\pi}{2} \)

(a) Find the equation of the line tangent to the curve at \(\theta = \pi/4 \).

\[
\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\sec(\theta)\tan(\theta)}{\sec^2(\theta)} = \frac{\tan(\theta)}{\sec(\theta)} = \sin(\theta)
\]

At \(\theta = \frac{\pi}{4} \)

\[
x_0 = \tan\left(\frac{\pi}{4}\right) = 1
\]

\[
y_0 = \sec\left(\frac{\pi}{4}\right) = \sqrt{2}
\]

\[
m = \frac{dy}{dx} = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}
\]

equation of tangent line
(y - y₀) = m(x - x₀)

y - \sqrt{2} = \frac{1}{\sqrt{2}} (x - 1)

or

y = \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}}

(b) Sketch the curve and the tangent line

\tan^2(\theta) + 1 = \sec^2(\theta)

x^2 + 1 = y^2

y^2 - x^2 = 1

<table>
<thead>
<tr>
<th>\theta</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\frac{\pi}{4}</td>
<td>1</td>
<td>\sqrt{2}</td>
</tr>
<tr>
<td>\frac{\pi}{4}</td>
<td>-1</td>
<td>\sqrt{2}</td>
</tr>
</tbody>
</table>

(sketch xy-axes, asymptotes, plot points, draw upper branch of hyperbola, sketch tangent line)

\frac{dy}{dx} = \sin(\theta), \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}

(c) Find \frac{d^2y}{dx^2} and discuss the concavity of the curve.

Since y' = \sin(\theta)

\frac{d^2y}{dx^2} = \frac{dy'/d\theta}{dx/d\theta} = \frac{\cos(\theta)}{\sec^2(\theta)} = \cos^3(\theta) > 0, \quad \text{for} \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}

The top branch of the hyperbola is concave up.

Example. Cycloid

x = r(\theta - \sin(\theta)),

y = r(1 - \cos(\theta))

Table with additional row

<table>
<thead>
<tr>
<th>\theta</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
</table>
Math 172 Chapter 9A notes

(a) Discuss the slope at $\theta = \pi, \pi/2$ and in the limit as $\theta \to 0^+$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r \sin(\theta)}{r(1-\cos(\theta))} = \frac{\sin(\theta)}{1-\cos(\theta)}$$

At $\theta = \pi$

$$\frac{dy}{dx} = \frac{\sin(\pi)}{1-\cos(\pi)} = 0 \quad \langle \text{add segment with slope 0} \rangle$$

At $\theta = \pi/2$

$$\frac{dy}{dx} = \frac{\sin(\pi/2)}{1-\cos(\pi/2)} = 1 \quad \langle \text{add segment with slope 1} \rangle$$

As $\theta \to 0^+$

$$\lim_{\theta \to 0^+} \frac{dy}{dx} = \lim_{\theta \to 0^+} \frac{\sin(\theta)}{1-\cos(\theta)} = \lim_{\theta \to 0^+} \frac{\cos(\theta) - 1}{\sin(\theta)}$$

$$= \frac{\cos(\theta) - 1}{1-\cos(\theta)^2}$$

where L'Hospital's rule has been used.

The cycloid has a vertical tangent in the limit $\theta \to 0^+$. $\langle \text{add} \rangle$

(b) Discuss concavity of the cycloid

$$\frac{d^2y}{dx^2} = \frac{dy'/d\theta}{dx/d\theta}$$

$$\frac{dy'}{d\theta} = \frac{d}{d\theta} \frac{\sin(\theta)}{1-\cos(\theta)} = \frac{\cos(\theta)(1-\cos(\theta)) - \sin(\theta) \sin(\theta)}{(1-\cos(\theta))^2}$$

$$= \frac{\cos(\theta) - 1}{(1-\cos(\theta))^2}$$

$$= \frac{-1}{1-\cos(\theta)}$$

$$\frac{dx}{d\theta} = r(1 - \cos(\theta))$$

$$\frac{d^2y}{dx^2} = \frac{-1}{r(1-\cos(\theta))^2}$$
\[\frac{d^2 y}{dx^2} < 0 \text{ for } 0 < \theta < 2\pi \]

The cycloid is concave down over the entire arch, except for the cusp points \(\theta = 0, \pi, \ldots \) where it is not defined.

Areas

\(\langle \text{sketch } 0 \ldots a \ldots b \ldots x-, 0 \ldots, \text{ curve } y \text{ above } [a, b] \rangle \)

Area under the curve

\[A = \int_a^b y \, dx \]

Suppose

\[x = f(t), \ y = g(t), \ \alpha \leq t \leq \beta, \text{ where } a = f(\alpha) \text{ and } b = f(\beta) \]

\[A = \int_\alpha^\beta g(t)f'(t) \, dt \]

Example. Find the area of the circle

\[x = \cos(t), \ y = \sin(t), \ 0 \leq t \leq 2\pi \]

\(\langle \text{sketch } xy\text{-axes, unit circle, angle } t \text{ CCW from positive } x\text{-axis} \rangle \)

\[A = 2 \int_{-1}^{1} y \, dx \]

\[= 2 \int_0^\pi \sin(t) \ (-) \sin(t) \, dt \]

\[= 2 \int_0^\pi \sin^2(t) \, dt \]

\[= 2 \int_0^{\pi/2} (1 - \cos(2t)) \, dt \]

\[= \pi - \int_0^\pi \cos(2t) \, dt \]

\[= \pi \]

Notice the last integral integrates over a full period of cosine.

Example. Find the area of the asteroid
\(x = \cos^3(t) \), \(y = \sin^3(t) \) \(0 \leq t \leq 2\pi \)

(sketch \(-1 \ldots 0 \ldots 1 \ldots x, \ldots -1 \ldots 0 \ldots 1 \ldots y, \) astroid)

\[
A = 2 \int_0^\pi \sin^3(t)3 \cos^2(t)(-\sin(t)) \, dt
\]

\[
= 6 \int_0^\pi \sin^4(t) \cos^2(t) \, dt
\]

\[
\sin^2(t) = \frac{1}{2}(1 - \cos(2t))
\]

\[
\sin^4(t) = \frac{1}{8}(1 - \cos(2t))^2
\]

\[
\cos^2(t) = \frac{1}{2}(1 + \cos(2t))
\]

therefore

\[
\sin^4(t) \cos^2(t) = \frac{1}{8}(1 - \cos(2t))(1 + \cos(2t))
\]

\[
= \frac{1}{8}(1 - \cos(2t)(1 - \cos^2(2t))
\]

\[
= \frac{1}{8}(1 - \cos(2t) - \cos^2(2t) + \cos^3(2t))
\]

so

\[
A = \frac{3}{4} \int_0^\pi (1 - \cos(2t) - \cos^2(2t) + \cos^3(2t)) \, dt
\]

Notice

\[
\int_0^\pi \cos(2t) \, dt = 0
\]

\[
\int_0^\pi \cos^3(2t) \, dt = 0
\]

\[
\int_0^\pi \cos^2(2t) \, dt = \pi/2
\]

The first two integrals are seen to be zero by symmetry because the integrands are odd powers of cosine and the argument \(2t\) varies over a full period.

The value of the last integral can be seen from the fact that the average value of \(\sin^2\) or \(\cos^2\) over their period (\(\pi\)) is \(\frac{1}{2}\). It is also an immediate consequence of the half angle identities.

\[
A = \frac{3}{4} \left(\pi - 0 - \frac{\pi}{2} + 0 \right) = \frac{3}{8} \pi
\]
Arc Length

Symbolically \(L = \int_C ds \)

\(\langle 0 \ldots a \ldots b \ldots x-, 0 \ldots y-, \text{ curve } C \text{ over } [a, b], \text{ triangle } dx, dy, ds \rangle \)

\[L = \int_c \sqrt{dx^2 + dy^2} \]

Suppose \(C \) is described by parametric equations

\[x = f(t), \quad y = g(t) \]

\[dx = \frac{dx}{dt} \, dt, \quad dy = \frac{dy}{dt} \, dt \]

then

\[L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \]

where \(a = f(\alpha) \) and \(b = f(\beta) \).

Example Find the length of the curve

\[x = e^t - t, \quad y = 4e^{\frac{t}{2}}, \quad 0 \leq t \leq 1 \]

\[\frac{dx}{dt} = e^t - 1, \quad \frac{dy}{dt} = 2e^{\frac{t}{2}} \]

\[\left(\frac{dx}{dt}\right)^2 = e^{2t} - 2e^t + 1, \quad \left(\frac{dy}{dt}\right)^2 = 4e^t \]

\[\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = e^{2t} + 2e^t + 1 = (e^t + 1)^2 \]

\[L = \int_0^1 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \]

\[= \int_0^1 (e^t + 1) \, dt \]

\[= e^t + t \bigg|_0^1 \]

\[= (e + 1) - (1 + 0) \]

\[= e \quad \blacksquare \]

Example Find the total length of the astroid
\[x = a \cos^3(\theta), \quad y = a \sin^3(\theta) \]

\[\langle \ldots a\ldots a\ldots x\ldots \ldots a\ldots a\ldots y\ldots , \text{astroid} \rangle \]

\[\frac{dx}{d\theta} = a3 \cos^2(\theta)(-\sin(\theta)) = -3 \cos^2(\theta)\sin(\theta) \]

\[\left(\frac{dx}{d\theta}\right)^2 = 9a^2 \cos^4(\theta) \sin^2(\theta) \]

\[\frac{dy}{d\theta} = a3 \sin^2(\theta)\cos(\theta) \]

\[\left(\frac{dy}{d\theta}\right)^2 = 9a^2 \sin^4(\theta) \cos^2(\theta) \]

\[L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \, d\theta \]

\[\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = 9a^2 \cos^2(\theta) \sin^2(\theta)(\cos^2(\theta) + \sin^2(\theta)) \]

\[= 9a^2 \cos^2(\theta) \sin^2(\theta) \]

For \(0 \leq \theta \leq \pi/2 \)

\[\cos(\theta) \geq 0 \text{ and } \sin(\theta) \geq 0 \]

Therefore

\[L = 4 \int_0^{\pi/2} 3a \cos(\theta) \sin(\theta) \, d\theta \]

\[= 12a \int_0^{\pi/2} \frac{1}{2} \sin(2\theta) \, d\theta \]

where we used \(\sin(2\theta) = 2 \sin(\theta) \cos(\theta) \)

\[L = 6a \left(-\frac{1}{2} \cos(2\theta) \right) \bigg|_0^{\pi} = 6a \left(-\frac{1}{2} \right) (-1 - 1) = 6a \]

\[\boxed{9.3 \text{ Polar Coordinates}} \]

Cartesian or rectangular coordinates

\[\langle \ldots \ldots x \ldots \ldots \ldots y\ldots , \ P(x,y) \rangle \]

\(P \) is associated with a unique ordered pair \((x,y)\)
Polar Coordinates

\(\langle \ldots 0 \ldots , \ldots 0 \ldots , \text{indicate the polar axis, ray, } r, \theta, P \rangle \)

- \(r \) distance from origin
- \(\theta \) angle measured CCW from the polar axis

Example. Plot \(Q: (r, \theta) = (2, \frac{5\pi}{6}) \)

\(\langle \ldots 0 \ldots , \ldots 0 \ldots , \text{ray, } \theta = \frac{5\pi}{6}, \ r = 2 \rangle \)

Representation in polar coordinates is **not unique**.

\(\langle \text{axes, } P, r, \theta, \theta + \pi, \text{indicate backward extension of ray through origin} \rangle \)

\(P \) may be represented by

\((r, \theta) \)

\((r, \theta + 2\pi), \ (r, \theta + 4\pi), \ldots \)

\((r, \theta - 2\pi), \ (r, \theta - 4\pi), \ldots \)

\((-r, \theta + \pi) \)

Example. May represent \(Q: \left(2, \frac{5\pi}{6} \right) \) by \(\left(2, -\frac{7\pi}{6} \right) \)

Sometimes restrict

\(r \geq 0, \ 0 \leq \theta < 2\pi \)

every point except \(r = 0 \) has a unique representation.

\(r = 0, \ \theta = \text{anything} \)

always represents the origin

Conversion from polar to Cartesian coordinates

\(\langle \ldots 0 \ldots , x \ldots , \ldots 0 \ldots , y \ldots , \text{ray, } r, \theta, \text{projection from tip to } x\text{-axis} \rangle \)
Example. Convert $P: (r, \theta) = (2, \frac{5\pi}{6})$ to Cartesian coordinates

\[
x = r \cos(\theta) = 2 \cos \left(\frac{5\pi}{6}\right) = 2 \left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3}
\]
\[
y = \sin(\theta) = 2 \sin \left(\frac{5\pi}{6}\right) = 2 \left(\frac{1}{2}\right) = 1 \quad \blacksquare
\]

Conversion from Cartesian to polar coordinates

\[
x = r \cos(\theta)
\]
\[
y = r \sin(\theta)
\]
\[
x^2 + y^2 = r^2 (\cos^2(\theta) + \sin^2(\theta)) = r^2
\]
\[
y = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta)
\]
\[
r^2 = x^2 + y^2
\]
\[
\tan(\theta) = \frac{y}{x}
\]

Example. Convert $Q: (x, y) = (1,1)$ to polar coordinates with $r \geq 0$ and $0 \leq \theta < 2\pi$.

\[
\langle \ldots 0 \ldots 1 \ldots, \ldots 0 \ldots 1 \ldots, Q \rangle
\]
\[
r^2 = x^2 + y^2 = 2 \quad \quad \quad \quad \quad \quad [1a]
\]
\[
\tan(\theta) = 1 \quad \quad \quad \quad \quad \quad [1b]
\]

Solutions of [1] with $r \geq 0$ and $0 \leq \theta < 2\pi$:

\[
r = \sqrt{2}, \quad \quad \theta = \frac{\pi}{4}, \quad \frac{5\pi}{4}
\]

Notice that $\tan(\theta + \pi) = \frac{\sin(\theta + \pi)}{\cos(\theta + \pi)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \tan(\theta)$

But $(r, \theta) = (\sqrt{2}, \frac{\pi}{4})$ is not the same point as $(\sqrt{2}, \frac{5\pi}{4})$

Equations [1] are not sufficient, we must also choose θ to be in the correct quadrant. \blacksquare
Polar Equations

General form

\[F(r, \theta) = 0 \]

Common form

\[r = f(\theta) \]

Example. \(r = a \)

\langle \text{axes, circle of radius } a \rangle

circle, center at origin, with radius \(a \)

To find equation in Cartesian coordinates, square both sides: \(r^2 = a^2 \)

giving \(x^2 + y^2 = a^2 \) ■

Example. Find the polar equation for the curve represented by

\[x^2 + y^2 = ay \] \[\text{[2]} \]

Let \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \), then \(x^2 + y^2 = r^2 \)

Eq. [2] becomes

\[r^2 = ar \sin(\theta) \]

Solutions are \(r = 0 \) or

\[r = a \sin(\theta) \]

[2] is an equation for a circle. To see, complete squares

\[x^2 + y^2 - ay = 0 \]

\[x^2 + y^2 - ay + \left(\frac{a^2}{4} - \frac{a^2}{4} \right) = 0 \]

\[x^2 + \left(y - \frac{a}{2} \right)^2 = \left(\frac{a}{2} \right)^2 \]

\langle \text{sketch axes, circle centered at } \left(0, \frac{a}{2} \right) \text{ with radius } \frac{a}{2} \rangle

circle with radius \(a/2 \) and center \(\left(0, \frac{a}{2} \right) \). ■
Symmetry of solutions of \(F(r, \theta) = 0 \)

(1) If \(F(r, \pi - \theta) = 0 \) whenever \(F(r, \theta) = 0 \), the solution is symmetric about the \(y \)-axis.

(2) If \(F(r, -\theta) = 0 \) whenever \(F(r, \theta) = 0 \), the solution is symmetric about the \(x \)-axis.

(3) If \(F(-r, \theta) = 0 \) whenever \(F(r, \theta) = 0 \), the solution is symmetric about the origin.

Example. \(r = a \sin (\theta) \).

\[
F(r, \theta) = r - a \sin (\theta) = 0.
\]

\[
\sin(\pi - \theta) = \sin (\theta)
\]

\[
F(r, \pi - \theta) = F(r, \theta)
\]

Solution is symmetric about the \(y \)-axis.

Example. \(r = 1 - \cos(\theta) \).

\[
\cos(-\theta) = \cos(\theta)
\]

Solution is symmetric about the \(x \)-axis.

Sketch \(r = 1 - \cos (\theta) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>(1 + \sqrt{2}/2 \approx 1.7)</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>1</td>
</tr>
<tr>
<td>(3\pi/4)</td>
<td>(1 - \sqrt{2}/2 \approx 0.3)</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(1 - 1 = 0)</td>
</tr>
</tbody>
</table>

Sketch points in first quadrant, draw smooth curve through them, complete in fourth quadrant.

This is a cardioid.

Tangents to Polar Curves

Common form of a polar equation
\(r = f(\theta) \)

where \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \).

Consider \(\theta \) as a parameter, then from the results of section 9.2

\[
\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{dr}{d\theta} \frac{\sin(\theta) + r \cos(\theta)}{dr \cos(\theta) - r \sin(\theta)}
\]

Let \(r = 0 \)

\[
\frac{dy}{dx} = \tan(\theta)
\]

Suppose the graph of \(r = f(\theta) \) passes through the origin at an angle \(\theta \)

\(\langle \text{axes, ray } r = \theta, \text{ curve passing through origin tangent to ray} \rangle \)

slope = \(\tan(\theta) \) \hspace{1cm} \langle \text{add projection down from ray to } x\text{-axis to complete a right triangle} \rangle

Example. Find the slope of the line tangent to

\[r = \sin(3\theta) \]

at \(\theta = \pi/6 \).

\[y = r \sin(\theta) = \sin(3\theta) \sin(\theta) \]

\[
\frac{dy}{d\theta} = 3 \cos(3\theta) \sin(\theta) + \sin(3\theta) \cos(\theta)
\]

\[x = r \cos(\theta) = \sin(3\theta) \cos(\theta) \]

\[
\frac{dx}{d\theta} = 3 \cos(3\theta) \cos(\theta) - \sin(3\theta) \sin(\theta)
\]

At \(\theta = \pi/6, \ 3\theta = \pi/2 \)

\[\sin(3\theta) = 1, \ \cos(3\theta) = 0, \ \sin(\theta) = 1/2, \ \cos(\theta) = \sqrt{3}/2 \]

\[
\left. \frac{dy}{d\theta} \right|_{\pi/6} = 3 \cdot 0 \cdot \frac{1}{2} + 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}
\]

\[
\left. \frac{dx}{d\theta} \right|_{\pi/6} = 3 \cdot 0 \cdot \frac{\sqrt{3}}{2} - 1 \cdot \frac{1}{2} = -\frac{1}{2}
\]

Thus \(\left. \frac{dy}{dx} \right|_{\pi/6} = \frac{\left. \frac{dy}{d\theta} \right|_{\pi/6}}{\left. \frac{dx}{d\theta} \right|_{\pi/6}} = \frac{\sqrt{3}/2}{-1/2} = -\sqrt{3} \)
Sketch \(r = \sin(3\theta) \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(3\theta)</th>
<th>(r = \sin(3\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\pi/12)</td>
<td>(\pi/4)</td>
<td>(\sqrt{2}/2)</td>
</tr>
<tr>
<td>(\pi/6)</td>
<td>(\pi/2)</td>
<td>1</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>(3\pi/4)</td>
<td>(\sqrt{2}/2)</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>(\pi)</td>
<td>0</td>
</tr>
</tbody>
</table>

(sketch axes, ray \(\theta = \pi/3 \), plot points, draw curve)

9.4 Areas and Lengths in Polar Coordinates

Area of a sector of a circle

\[
\frac{A}{\pi r^2} = \frac{\theta}{2\pi}
\]

\[A = \pi r^2 \frac{\theta}{2\pi} = \frac{1}{2} r^2 \theta\]

Area bounded by a polar curve \(r = f(\theta) \):

\(0\), dashed polar axis, ray \(\theta = a\), ray \(\theta = b\), curve \(r = f(\theta) \) between these angles, small sector subtended by \(d\theta \), its angle \(\theta \)

Area of slice with angle \(d\theta \): \[
\frac{1}{2} r^2 d\theta = \frac{1}{2} f(\theta)^2 d\theta
\]

Total area bounded by \(f(\theta) \) and the rays \(\theta = a \) and \(\theta = b \)

\[A = \int_a^b \frac{1}{2} f(\theta)^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta\]

Example. Find the area enclosed by the loop of \(r = \sin(3\theta) \) between \(\theta = 0 \) and \(\theta = \pi/3 \).

\[A = \frac{1}{2} \int_0^{\pi/3} \sin^2(3\theta) \ d\theta\]

Use the half-angle identity \(\sin^2(3\theta) = \frac{1}{2}(1 - \cos(6\theta)) \)

\[A = \frac{1}{4} \int_0^{\pi/3} (1 - \cos(6\theta)) \ d\theta = \frac{\pi}{12} - \frac{1}{4} \int_0^{\pi/3} \cos(6\theta) \ d\theta\]
\[= \frac{\pi}{12} \left(-\frac{1}{4} \int_0^{2\pi} \cos(u) \frac{1}{6} \, du \right)\]
\[= \frac{\pi}{12}\]

with the substitution \(u = 6\theta \).

Example. Find the area of the region that lies inside the graph of
\[r = 1 + \cos(\theta) = f(\theta)\]
but outside the graph of
\[r = 3 \cos(\theta) = g(\theta)\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\cos(\theta))</th>
<th>(1 + \cos(\theta))</th>
<th>(3 \cos(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>0.7</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(2\pi/3)</td>
<td>-0.5</td>
<td>0.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>(3\pi/4)</td>
<td>-0.7</td>
<td>0.3</td>
<td>-2.1</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-1</td>
<td>0</td>
<td>-3</td>
</tr>
</tbody>
</table>

\(<\ldots 0 \ldots 1 \ldots 2 \ldots 3 \ldots, \ldots -1 \ldots 0 \ldots 1 \ldots,\ldots,\)\) plot points for cardioids and draw curve (lower half plane by symmetry), plot points for circle and draw curve. Area \(A \) has components in the first and second quadrants.

Area between curves is \(2A \).

Find intersections between curves
\[1 + \cos(\theta) = 3 \cos(\theta)\]
\[1 = 2 \cos(\theta)\]
\[\frac{1}{2} = \cos(\theta)\]
\[\theta = \pm \frac{\pi}{3}\]

This misses the intersection at the origin! Why? Graphs have different values of \(\theta \) at the origin.

\[A = \int_{\pi/3}^{\pi} f(\theta)^2 \, d\theta - \int_{\pi/3}^{\pi/2} g(\theta)^2 \, d\theta\]

\[f(\theta)^2 = (1 + \cos(\theta))^2 = 1 + 2 \cos(\theta) + \cos^2(\theta)\]

\[= 1 + 2 \cos(\theta) + \frac{1}{2}(1 + \cos(2\theta))\]
\[f(\theta) = \frac{3}{2} + 2\cos(\theta) + \frac{1}{2}\cos(2\theta) \]

\[
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(\theta)^2 d\theta = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\frac{3}{4} \pi \right) + \frac{1}{8}\sin(2\theta) \mid_{\frac{\pi}{3}}^{\frac{\pi}{2}}
\]

\[
= \frac{3}{4} \left(\pi - \frac{\pi}{3} \right) + \frac{1}{8} \left(\sin(2\theta) \right) \mid_{\frac{\pi}{3}}^{\frac{\pi}{2}}
\]

\[
= \frac{3}{4} \left(\frac{2\pi}{3} \right) + \frac{1}{8} \left(0 - \frac{\sqrt{3}}{2} \right)
\]

\[
= \frac{\pi}{2} - \frac{\sqrt{3}}{2} \cdot \frac{9}{8}
\]

\[g(\theta)^2 = 9\cos^2(\theta) = \frac{9}{2} (1 + \cos(2\theta)) \]

\[
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} g(\theta)^2 d\theta = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{9}{4} (1 + \cos(2\theta)) d\theta
\]

\[
= \frac{9}{4} \left(\pi - \frac{\pi}{3} \right) + \frac{9}{8} \left(\frac{1}{2}\sin(2\theta) \right) \mid_{\frac{\pi}{3}}^{\frac{\pi}{2}}
\]

\[
= \frac{9}{4} \cdot \frac{1}{2}\pi + \frac{9}{8} \left(0 - \frac{\sqrt{3}}{2} \right)
\]

\[
= \frac{3}{8} \pi - \frac{\sqrt{3}}{2} \cdot \frac{9}{8}
\]

Then \[A = \frac{\pi}{8} \] Area between the curves \[2A = \frac{\pi}{4} \]

Arc Lengths in Polar Coordinates

\(\langle \text{sketch 0}, 0, \ldots, \text{ray } \theta = a, \text{ray } \theta = b, \text{curve } C \rangle \)

Symbolically

\[L = \int_L ds = \int_C \sqrt{dx^2 + dy^2} = \int_a^b \sqrt{\left(\frac{dx}{d\theta} \right)^2 + \left(\frac{dy}{d\theta} \right)^2} \ d\theta \]

where

\[x = r \cos(\theta), \quad y = \sin(\theta) \]

Keeping in mind that \(r \) depends on \(\theta \):

\[\frac{dx}{d\theta} = \frac{dr}{d\theta} \cos(\theta) - r \sin(\theta) \]

\[\frac{dy}{d\theta} = \frac{dr}{d\theta} \sin(\theta) + r \cos(\theta) \]
Thus

\[L = \int_a^b \sqrt{\left(\frac{dr}{d\theta} \right)^2 + r^2} \ d\theta \]

Example. Find the length of the cardioid \(r = 1 + \cos(\theta) \).

\[
L = 2 \int_0^\pi \sqrt{\left(\frac{dr}{d\theta} \right)^2 + r^2} \ d\theta
\]

where

\[
\frac{dr}{d\theta} = -\sin(\theta)
\]

\[
r^2 + \left(\frac{dr}{d\theta} \right)^2 = (1 + \cos(\theta))^2 + \sin^2(\theta)
\]

\[
= 1 + 2\cos(\theta) + \cos^2(\theta) + \sin^2(\theta)
\]

\[
= 2 + 2\cos(\theta)
\]

\[
L = 2 \int_0^\pi \sqrt{2 + 2\cos(\theta)} \ d\theta
\]

consider

\[
\cos^2 \left(\frac{\theta}{2} \right) = \frac{1}{2} (1 + \cos(\theta))
\]

\[
4 \cos^2 \left(\frac{\theta}{2} \right) = 2(1 + \cos(\theta))
\]

\[
\cos \left(\frac{\theta}{2} \right) \geq 0 \text{ for } 0 \leq \theta \leq \frac{\pi}{2}
\]

Then

\[
L = 2 \int_0^\pi 2 \cos \left(\frac{\theta}{2} \right) \ d\theta
\]
\[= 4 \left(2 \sin \left(\frac{\theta}{2} \right) \right) \bigg|_0^\pi \]

\[= 8 \left(\sin \left(\frac{\pi}{2} \right) - \sin(0) \right) \]

\[= 8 \quad \blacksquare \]