Math 546 Assignment 3 due Thursday, September 23

1. Basic properties of the Kronecker product

(a) Let X, Y, W, and Z be matrices whose dimensions are such that
the products XW and YZ are defined. Show that the product $(X \otimes Y)(W \otimes Z)$ is defined, and $(X \otimes Y)(W \otimes Z) = (XW) \otimes (YZ)$.

(Notice the following important special case. If u and v are column vectors such that Xu and Yv are defined, then $u \otimes v$ is a (long) column vector such that $(X \otimes Y)(u \otimes v) = Xu \otimes Yv$.)

(b) Suppose X is $m \times m$ and Y is $n \times n$. Suppose λ is an eigenvalue of X with associated eigenvector u, and μ is an eigenvalue of Y with associated eigenvector v.

i. Show that $\lambda \mu$ is an eigenvalue of $X \otimes Y$ with associated eigenvector $u \otimes v$.

ii. Let I_k denote the $k \times k$ identity matrix. Show that $\lambda + \mu$ is an eigenvalue of $X \otimes I_n + I_m \otimes Y$ with associated eigenvector $u \otimes v$.

(c) Show that if u_1, \ldots, u_n is a set of n orthonormal vectors, and v_1, \ldots, v_m is a set of m orthonormal vectors, then $u_i \otimes v_j$, $i = 1, \ldots, n$, $j = 1, \ldots, m$, is a set of nm orthonormal vectors.

2. Let A denote the matrix of the linear system obtained by discretizing the two-dimensional Poisson equation

$$-\Delta u = f \quad \text{in} \quad \Omega = (0, 1)^2, \quad u = v \text{ on } \partial \Omega$$

with mesh size $h = 1/n$ using the standard five-point stencil.

(a) Find a complete set of eigenvalues and eigenvectors of A.

(b) Prove that the finite difference scheme is stable, hence convergent of order 2.

3. Let A denote the matrix of the linear system obtained by discretizing the three-dimensional Poisson equation

$$-\Delta u = f \quad \text{in} \quad \Omega = (0, 1)^3, \quad u = v \text{ on } \partial \Omega$$

with mesh size $h = 1/n$ using the standard second-order finite-difference approximations to the second derivatives.
(a) Show that A is block tridiagonal with blocks of dimension $(n - 1)^2 \times (n - 1)^2$ and that each of these blocks is itself block tridiagonal. Approximately what is the band width of A?

(b) Use tensor products to obtain a concise expression for A.
(Note: You can easily convince yourself that $(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z)$, so the expression $X \otimes Y \otimes Z$ is unambiguous.)