Math 420/520

Assignment 4

1. Let \(\mathcal{V} = \mathbb{C}^n \), considered as a vector space over \(\mathbb{R} \). Prove that \(\dim(\mathcal{V}) = 2n \).

Let \(e_1, \ldots, e_n \) be the standard basis in \(\mathbb{R}^n \), and let \(g_j = ie_j \) for \(j = 1, \ldots, n \). I claim that the set of \(2n \) vectors \(e_1, \ldots, e_n, g_1, \ldots, g_n \) is a basis for \(\mathcal{V} \), considered as a vector space over \(\mathbb{R} \). We have to show that these vectors are linearly independent and span \(\mathcal{V} \).

To see that they are linearly independent, suppose

\[
\sum_{j=1}^{n} \alpha_j e_j + \sum_{j=1}^{n} \beta_j g_j = 0,
\]

where \(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \) are real numbers. Then

\[
\begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
+ \cdots +
\begin{bmatrix}
0 \\
0 \\
\vdots \\
1
\end{bmatrix}
+ \beta_1
\begin{bmatrix}
i \\
0 \\
\vdots \\
i
\end{bmatrix}
+ \cdots +
\begin{bmatrix}
0 \\
0 \\
\vdots \\
i
\end{bmatrix}
= 0,
\]

so

\[
\begin{bmatrix}
\alpha_1 + i\beta_1 \\
\alpha_2 + i\beta_2 \\
\vdots \\
\alpha_n + i\beta_n
\end{bmatrix}
= 0,
\]

so \(\alpha_j + i\beta_j = 0 \) for \(j = 1, \ldots, n \). This, in turn, implies \(\alpha_j = 0 \) and \(\beta_j = 0 \) for \(j = 1, \ldots, n \). Thus \(e_1, \ldots, e_n, g_1, \ldots, g_n \) are linearly independent.

To see that they span \(\mathcal{V} \), we must show that every element of \(\mathcal{V} \) can be written as a linear combination of \(e_1, \ldots, e_n, g_1, \ldots, g_n \) with real coefficients. Let \(x \) be an arbitrary element of \(\mathcal{V} \), say

\[
x = \begin{bmatrix}
\gamma_1 + i\delta_1 \\
\gamma_2 + i\delta_2 \\
\vdots \\
\gamma_n + i\delta_n
\end{bmatrix},
\]
where γ_1, \ldots, γ_n, δ_1, \ldots, δ_n are real. Then $x = \gamma_1 e_1 + \cdots + \gamma_n e_n + \delta_1 g_1 + \cdots + \delta_n g_n$. Thus x is a linear combination of e_1, \ldots, e_n, g_1, \ldots, g_n with real coefficients. This shows that e_1, \ldots, e_n, g_1, \ldots, g_n span \mathcal{V}.

Since this basis has $2n$ elements, the dimension of \mathcal{V} is $2n$.

2. Let \mathcal{V} be the set of real polynomials of degree ≤ 2. Then \mathcal{V} is a vector space over \mathbb{R}. Let $p_1(x) = 2$, $p_2(x) = 3 + 4x$, $p_3(x) = 5 + 6x + 7x^2$. Clearly p_1, p_2, and p_3 are all members of \mathcal{V}. Show that $\{p_1, p_2, p_3\}$ is a basis of \mathcal{V}.

Sample Solution 1: We established previously (in class) that 1, x, x^2 form a basis for \mathcal{V}. Thus $\dim(\mathcal{V}) = 3$, so any linearly independent 3-element set in \mathcal{V} is a basis (invoking Exercise 4, part a, to be proved below). Therefore we just have to show that p_1, p_2, p_3 are linearly independent. To this end, suppose

$$\alpha_1 p_1(x) + \alpha_2 p_2(x) + \alpha_3 p_3(x) = 0.$$

Then, after some elementary algebra,

$$(2\alpha_1 + 3\alpha_2 + 5\alpha_3) + (4\alpha_2 + 6\alpha_3)x + (7\alpha_3)x^2 = 0.$$

Since 1, x, x^2 are linearly independent, we conclude that $2\alpha_1 + 3\alpha_2 + 5\alpha_3 = 0$, $4\alpha_2 + 6\alpha_3 = 0$, and $7\alpha_3 = 0$. The last equation implies $\alpha_3 = 0$. Substituting $\alpha_3 = 0$ into the second equation, we get $4\alpha_2 = 0$, which implies $\alpha_2 = 0$. Finally, substituting $\alpha_2 = 0$ and $\alpha_3 = 0$ into the first equation, we get $2\alpha_1 = 0$, which implies $\alpha_1 = 0$. Thus $\alpha_1 = \alpha_2 = \alpha_3 = 0$, so $\{p_1, p_2, p_3\}$ is a linearly independent set.

Sample Solution 2: In class I stated the following result: $\{v_1, \ldots, v_k\}$ is a basis for \mathcal{V} if and only if every $v \in \mathcal{V}$ can be written as a linear combination of v_1, \ldots, v_k in exactly one way. I didn’t prove this result; I left it as an easy exercise for you. We can use this result to work this problem.

Let $p(x) = c_1 + c_2 x + c_3 x^2$ be an arbitrary element of \mathcal{V}. We must show that there exist unique α_1, α_2, and $\alpha_3 \in \mathbb{R}$ such that

$$p(x) = \alpha_1 p_1(x) + \alpha_2 p_2(x) + \alpha_3 p_3(x). \quad (1)$$
We can rewrite this equation as

\[c_1 + c_2x + c_3x^2 = (2\alpha_1 + 3\alpha_2 + 5\alpha_3) + (4\alpha_2 + 6\alpha_3)x + (7\alpha_3)x^2. \]

Since \(1, x, x^2 \) are linearly independent, we have \(c_1 = 2\alpha_1 + 3\alpha_2 + 5\alpha_3, \)
\(c_2 = 4\alpha_2 + 6\alpha_3, \) and \(c_3 = 7\alpha_3. \) We can write these three linear equations
as a single matrix equation

\[
\begin{bmatrix}
2 & 3 & 5 \\
0 & 4 & 6 \\
0 & 0 & 7 \\
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\end{bmatrix} =
\begin{bmatrix}
c_1 \\
c_2 \\
c_3 \\
\end{bmatrix}.
\]

(2)

In this equation, the coefficient matrix is upper triangular and has all
main-diagonal entries nonzero. Therefore (by Exercise 3 of Assignment
2), it is nonsingular. Thus the system (2) has a unique solution \(\alpha_1, \alpha_2, \alpha_3. \) Thus (1) has a unique solution.

3. Suppose \(v_1, \ldots, v_m \) is a spanning set for the vector space \(V. \) Prove that
\(v_1, \ldots, v_m \) has a subset that is a basis of \(V. \) You may give either an
informal (but careful and correct) argument that removes one vector
at a time or a formal induction proof.

Here's and informal argument: If \(v_1, \ldots, v_m \) are linearly independent,
we are done. Suppose they are linearly dependent. Then there is a
\(j \) such that \(v_j \in \text{span}\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m\}. \) I claim that \(v_1, \ldots, \)
\(v_{j-1}, v_{j+1}, \ldots, v_m \) is a spanning set for \(V. \) To show this, we must show
that an arbitrary \(x \in V \) can be written as a linear combination of
\(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m. \) To begin with, we know that

\[x = \alpha_1 v_1 + \cdots + \alpha_j v_j + \cdots + \alpha_m v_m, \tag{3} \]

for some scalars \(\alpha_1, \ldots, \alpha_m, \) because \(v_1, \ldots, v_m \) span \(V. \) We also have

\[v_j = \beta_1 v_1 + \cdots + \beta_{j-1} v_{j-1} + \beta_{j+1} v_{j+1} + \cdots + \beta_m v_m, \tag{4} \]

for some scalars \(\beta_1, \ldots, \beta_{j-1}, \beta_{j+1}, \ldots, \beta_m, \) because
\(v_j \in \text{span}\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m\}. \)

Substituting (4) into (3), we obtain

\[
x = (\alpha_1 + \alpha_j \beta_1) v_1 + \cdots + (\alpha_{j-1} + \alpha_j \beta_{j-1}) v_{j-1} \\
+ (\alpha_{j+1} + \alpha_j \beta_{j+1}) v_{j+1} + \cdots + (\alpha_m + \alpha_j \beta_m) v_m \\
= \gamma_1 v_1 + \cdots + \gamma_{j-1} v_{j-1} + \gamma_{j+1} v_{j+1} + \cdots + \gamma_m v_m,
\]

where \(\gamma_j = \alpha_j + \alpha_{j+1} \beta_{j+1} + \cdots + \alpha_m \beta_m. \)
where \(\gamma_k = \alpha_k + \alpha_j \beta_k \). This proves that \(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m \) span \(\mathcal{V} \).

Now, if \(v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_m \) are linearly independent, we are done. If not, we can remove another vector and still have a spanning set, as just shown. We can continue the process until we obtain a basis for \(\mathcal{V} \).

4. Let \(\mathcal{V} \) be a vector space of dimension \(k \). Prove the following two statements.

(a) Any set of \(k \) linearly independent vectors in \(\mathcal{V} \) is a basis for \(\mathcal{V} \).

Let’s prove this by contradiction. Suppose we have a set of \(k \) linearly independent vectors that is not a basis. We proved in class that this set (i.e., any linearly independent set) can be extended to make a basis of \(\mathcal{V} \). This basis necessarily has more than \(k \) vectors, so the dimension of \(\mathcal{V} \) is greater than \(k \). This contradicts the basic assumption that \(\dim(\mathcal{V}) = k \).

(b) Any spanning set of \(k \) vectors in \(\mathcal{V} \) is a basis for \(\mathcal{V} \).

Let’s prove this by contradiction, too. Suppose we have a spanning set of \(k \) vectors in \(\mathcal{V} \) that is not a basis for \(\mathcal{V} \). Then, by the previous problem, this spanning set has a subset, which must be a proper subset, that is a basis for \(\mathcal{V} \). Thus \(\dim(\mathcal{V}) < k \). This contradicts the assumption that \(\dim(\mathcal{V}) = k \).

5. Prove that if \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \) are both subspaces of \(\mathcal{V} \), then \(\mathcal{S}_1 \cap \mathcal{S}_2 \) is also a subspace of \(\mathcal{V} \).

We begin by showing that \(\mathcal{S}_1 \cap \mathcal{S}_2 \) is nonempty. We know that \(0 \in \mathcal{S}_1 \) and \(0 \in \mathcal{S}_2 \). Therefore \(0 \in \mathcal{S}_1 \cap \mathcal{S}_2 \).

Now we show that \(\mathcal{S}_1 \cap \mathcal{S}_2 \) is closed under vector addition. Suppose \(v, w \in \mathcal{S}_1 \cap \mathcal{S}_2 \). Then \(v, w \in \mathcal{S}_j \), for \(j = 1, 2 \). Since \(\mathcal{S}_j \) is a subspace, it is closed under vector addition, so we conclude that \(v + w \in \mathcal{S}_j \) for \(j = 1, 2 \). Thus \(v + w \in \mathcal{S}_1 \cap \mathcal{S}_2 \).

Finally, we show that \(\mathcal{S}_1 \cap \mathcal{S}_2 \) is closed under scalar multiplication. Suppose \(v \in \mathcal{S}_1 \cap \mathcal{S}_2 \) and \(\alpha \in \mathbb{F} \). Then \(v \in \mathcal{S}_j \), for \(j = 1, 2 \). Since \(\mathcal{S}_j \) is a subspace, it is closed under scalar multiplication, so we conclude that \(\alpha v \in \mathcal{S}_j \) for \(j = 1, 2 \). Thus \(\alpha v \in \mathcal{S}_1 \cap \mathcal{S}_2 \).
Since $\mathcal{S}_1 \cap \mathcal{S}_2$ is nonempty and closed under vector addition and scalar multiplication, it is a subspace of \mathcal{V}.