Math 420/520

Assignment 10 due December 14, 2001

1. Let $A \in \mathbb{C}^{n \times n}$.

 (a) Show that if A is nonsingular and (λ, v) is an eigenpair of A, then
 (λ^{-1}, v) is an eigenpair of A^{-1}.

 (b) Show that if (λ, v) is an eigenpair of A, then (λ^j, v) is an eigenpair
 of A^j for every nonnegative integer j. (Combining this result with that of part (a),
 we see that the result holds for negative integers as well.)

 (c) If q is a polynomial, say $q(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k$, define
 the matrix $q(A)$ by

 $$q(A) = a_0 I + a_1 A + a_2 A^2 + \cdots + a_k A^k.$$

 Show that if (λ, v) is an eigenpair of A, then $(q(\lambda), v)$ is an eigen-
 pair of $q(A)$.

2. Recall that a matrix $P \in \mathbb{C}^{n \times n}$ is idempotent if $P^2 = P$. (Idempotents are
 projectors.) Show that if P is idempotent, $P \neq 0$, and $P \neq I$, then $\sigma(P) = \{0, 1\}$.
 Characterize the eigenspaces of P. Show that P is semisimple.

3. A matrix $N \in \mathbb{C}^{n \times n}$ is called nilpotent if there is a positive integer k
 such that $N^k = 0$.

 (a) Show that if N is nilpotent, $\sigma(N) = \{0\}$.

 (b) Show that if N is nilpotent, then N is unitarily similar to a strictly
 upper triangular matrix.
4. Recall that if $A \in \mathbb{C}^{n \times n}$, $\text{tr}(A) = \sum_{j=1}^{n} a_{jj}$.

(a) Show that if $C \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{n \times m}$, then

$$\text{tr}(CD) = \text{tr}(DC).$$

Notice that CD and DC are square, even though C and D may not be.

(b) Use the result of part (a) (square case) in an intelligent way to show that if $B = S^{-1}AS$, then $\text{tr}(B) = \text{tr}(A)$.

(c) Show that if A has eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$\text{tr}(A) = \lambda_1 + \cdots + \lambda_n.$$