Math 420/520

Solutions to Exam 2

1. Let \mathcal{V} be a vector space over a field \mathbb{F}, and let $v_1, v_2, \ldots, v_k \in \mathcal{V}$.

(a) (5 points) State clearly and concisely what is meant by linear independence of v_1, v_2, \ldots, v_k.

The only solution of $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$ with $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{F}$ is $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$.

(b) (5 points) v_1, v_2, \ldots, v_k is a spanning set for \mathcal{V} if $\mathcal{V} = \text{span}\{v_1, \ldots, v_k\}$. Exactly what does this mean?

For every $v \in \mathcal{V}$ there exist $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$ such that $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$.

(c) (5 points) What is a basis for a vector space \mathcal{V}?

A basis is a linearly independent spanning set for \mathcal{V}.

(d) (5 points) What do we mean by the dimension of a vector space?

The dimension of a vector space is the number of elements in a basis for the space.

(e) (5 points) Before we could define dimension, we had to prove a key theorem. What does that theorem say?

Any two bases for a space have the same number of elements.
2. (5 points) Let \(\mathcal{V} \) be a vector space over \(\mathbb{F} \), and let \(\mathcal{B} = \{v_1, v_2\} \) be a basis for \(\mathcal{V} \). Suppose \(U, S, T_1, \) and \(T_2 \in \mathcal{L}(\mathcal{V}, \mathcal{V}) \) are linear transformations related by \(U = S(T_1 + T_2) \). Determine \([U]_{\mathcal{B}, \mathcal{B}}\), given that

\[
[S]_{\mathcal{B}, \mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad [T_1]_{\mathcal{B}, \mathcal{B}} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad \text{and} \quad [T_2]_{\mathcal{B}, \mathcal{B}} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.
\]

\[
[U]_{\mathcal{B}, \mathcal{B}} = [S]_{\mathcal{B}, \mathcal{B}}([T_1]_{\mathcal{B}, \mathcal{B}} + [T_2]_{\mathcal{B}, \mathcal{B}})
\]

\[
= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \left(\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right)
\]

\[
= \begin{bmatrix} 5 & 4 \\ 2 & 2 \end{bmatrix}.
\]

3. (10 points) Let \(T \in \mathcal{L}(\mathcal{V}, \mathcal{W}) \). Define \(\mathcal{N}(T) \), the null space of \(T \), and show that \(\mathcal{N}(T) \) is a subspace of \(\mathcal{V} \).

\[
\mathcal{N}(T) = \{v \in \mathcal{V} | T(v) = 0\}.
\]

To show that \(\mathcal{N}(T) \) is a subspace, we have to show that it is nonempty, closed under vector addition, and closed under scalar multiplication.

Since \(T(0) = 0 \), we see that \(0 \in \mathcal{N}(T) \), so \(\mathcal{N}(T) \) is nonempty.

Now let \(v_1, v_2 \in \mathcal{N}(T) \). Then \(T(v_1) = 0 \) and \(T(v_2) = 0 \), so \(T(v_1 + v_2) = T(v_1) + T(v_2) = 0 + 0 = 0 \). Therefore \(v_1 + v_2 \in \mathcal{N}(T) \). This shows that \(\mathcal{N}(T) \) is closed under vector addition.

Finally, let \(v \in \mathcal{N}(T) \) and \(\alpha \in \mathbb{F} \). Since \(v \in \mathcal{N}(T) \), we have \(T(v) = 0 \), so \(T(\alpha v) = \alpha T(v) = \alpha 0 = 0 \). Thus \(\alpha v \in \mathcal{N}(T) \). This shows that \(\mathcal{N}(T) \) is closed under scalar multiplication.
4. (10 points) Using the defining properties (axioms) of an inner product, show that in any inner product space \mathcal{V} over \mathbb{C},

$$\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle$$

for all $x, y \in \mathcal{V}$ and all $\alpha \in \mathbb{C}$.

\[
\begin{align*}
\langle x, \alpha y \rangle & = \overline{\langle \alpha y, x \rangle} \quad \text{(conjugate symmetry)} \\
& = \overline{\alpha \langle y, x \rangle} \quad \text{(linearity in first argument)} \\
& = \overline{\alpha} \langle y, x \rangle \quad \text{(property of complex numbers)} \\
& = \overline{\alpha} \langle x, y \rangle \quad \text{(conjugate symmetry)}
\end{align*}
\]

5. (10 points) Show that if \mathcal{V} is an inner product space, $x, y \in \mathcal{V}$, and $x \perp y$, then

$$\| x - y \|^2 = \| x \|^2 + \| y \|^2.$$

Since $x \perp y$, we have $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$. Therefore

\[
\begin{align*}
\| x - y \|^2 & = \langle x - y, x - y \rangle \\
& = \langle x, x - y \rangle - \langle y, x - y \rangle \\
& = \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\
& = \| x \|^2 - 0 - 0 + \| y \|^2 \\
& = \| x \|^2 + \| y \|^2.
\end{align*}
\]
6. (10 points) Let \mathcal{V} and \mathcal{W} be inner product spaces over \mathbb{C}, and let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Given $y \in \mathcal{W}$, define $L : \mathcal{V} \to \mathbb{C}$ by $Lx = \langle Tx, y \rangle$ for all $x \in \mathcal{V}$. Show that $L \in \mathcal{L}(\mathcal{V}, \mathbb{C})$.

Let $v_1, v_2 \in \mathcal{V}$. Then

\[
L(v_1 + v_2) = \langle T(v_1 + v_2), y \rangle \\
= \langle T(v_1) + T(v_2), y \rangle \quad \text{(linearity of } T) \\
= \langle T(v_1), y \rangle + \langle T(v_2), y \rangle \quad \text{(linearity of inner product)} \\
= L(v_1) + L(v_2).
\]

Let $v \in \mathcal{V}$ and $\alpha \in \mathbb{F}$. Then

\[
L(\alpha v) = \langle T(\alpha v), y \rangle \\
= \langle \alpha T(v), y \rangle \quad \text{(linearity of } T) \\
= \alpha \langle T(v), y \rangle \quad \text{(linearity of inner product)} \\
= \alpha L(v).
\]

Therefore L is linear.

7. (10 points) Let \mathcal{V} be an inner product space, and let $x, y \in \mathcal{V}$ with $y \neq 0$. Show that there is a unique $\beta \in \mathbb{F}$ such that $x - \beta y \perp y$. Give a formula for β.

$x - \beta y \perp y$ if and only if $\langle x - \beta y, y \rangle = 0$ if and only if $\langle x, y \rangle - \beta \langle y, y \rangle = 0$ if and only if

\[
\beta = \frac{\langle x, y \rangle}{\langle y, y \rangle}.
\]

(Since $y \neq 0$, it is guaranteed that $\langle y, y \rangle \neq 0$.)
8. (10 points) Let

\[f_1(x) = e^x, \quad f_2(x) = xe^x, \quad f_3(x) = x^2e^x, \]

and let \(\mathcal{W} \) be the three-dimensional vector space span\(\{f_1, f_2, f_3\} \). Define \(T \in \mathcal{L}(\mathcal{W}, \mathcal{W}) \) by \(Tf = f' \) (first derivative). Compute \([T]_B,B\), the matrix of \(T \) with respect to the basis \(B = \{f_1, f_2, f_3\} \).

\[
\begin{align*}
Tf_1 &= 1f_1 + 0f_2 + 0f_3 \\
Tf_2 &= 1f_1 + 1f_2 + 0f_3 \\
Tf_3 &= 0f_1 + 2f_2 + 1f_3
\end{align*}
\]

Therefore

\[
[T]_B,B = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}.
\]
9. (10 points) Let \(T \in \mathcal{L}(V, W) \), where \(\dim(V) = n \). Define the rank and nullity of \(T \), and prove that rank plus nullity equals \(n \). (If you’re out of time, just sketch the proof; that is, indicate how you would prove it, leaving out the details that you don’t have time for.)

The rank of \(T \) is the dimension of the range of \(T \). The nullity of \(T \) is the dimension of the nullspace of \(T \).

Let \(k \) denote the nullity of \(T \), that is, \(k = \dim(\mathcal{N}(T)) \). Let \(v_1, \ldots, v_k \) be a basis for \(\mathcal{N}(T) \). We can extend this to a basis for \(V \). That is, there exist \(v_{k+1}, \ldots, v_n \) such that \(v_1, \ldots, v_n \) is a basis for \(V \).

I claim that \(Tv_{k+1}, \ldots, Tv_n \) is a basis for \(\mathcal{R}(T) \). If so, we have \(\text{rank}(T) = \dim(\mathcal{R}(T)) = n - k \), so rank plus nullity equals \(n \), as claimed.

To show that \(Tv_{k+1}, \ldots, Tv_n \) is a basis for \(\mathcal{R}(T) \), we first show that these vectors span \(\mathcal{R}(T) \). Let \(w \in \mathcal{R}(T) \). Then there is a \(v \in V \) such that \(Tv = w \). Now \(v = \alpha_1 v_1 + \cdots + \alpha_n v_n \) for some \(\alpha_1, \ldots, \alpha_n \in \mathbb{F} \), so

\[
 w = Tv = \alpha_1 Tv_1 + \cdots + \alpha_k Tv_k + \alpha_{k+1} Tv_{k+1} + \cdots + \alpha_n Tv_n \\
 = 0 + \cdots + 0 + \alpha_{k+1} Tv_{k+1} + \cdots + \alpha_n Tv_n \\
 = \alpha_{k+1} Tv_{k+1} + \cdots + \alpha_n Tv_n.
\]

Therefore \(Tv_{k+1}, \ldots, Tv_n \) span \(\mathcal{R}(T) \).

We now show that \(Tv_{k+1}, \ldots, Tv_n \) are linearly independent. Suppose

\[
 \alpha_{k+1} Tv_{k+1} + \cdots + \alpha_n Tv_n = 0.
\]

Then \(T(\alpha_{k+1} v_{k+1} + \cdots + \alpha_n v_n) = 0 \), so \(\alpha_{k+1} v_{k+1} + \cdots + \alpha_n v_n \in \mathcal{N}(T) \).

Therefore \(\alpha_{k+1} v_{k+1} + \cdots + \alpha_n v_n = \beta_1 v_1 + \cdots + \beta_k v_k \) for some \(\alpha_1, \ldots, \alpha_k \in \mathbb{F} \). Thus, letting \(\alpha_j = -\beta_j \) for \(j = 1, \ldots, k \), we have

\[
 \alpha_1 v_1 + \cdots + \alpha_k v_k + \alpha_{k+1} v_{k+1} + \cdots + \alpha_n v_n = 0.
\]

Since \(v_1, \ldots, v_n \) are linearly independent, we have \(\alpha_j = 0 \) for \(j = 1, \ldots, n \). In particular \(\alpha_{k+1} = \cdots = \alpha_n = 0 \), showing that \(Tv_{k+1}, \ldots, Tv_n \) are linearly independent.