In this assignment you will analyze the convergence rate of the secant method for solving an equation \(f(x) = 0 \). To this end we will make use of first and second order divided differences of \(f \), which are defined as follows. If \(x, y, \) and \(z \) are three distinct points, first-order divided differences are given by

\[
f[x, y] = \frac{f(x) - f(y)}{x - y},
\]

and second-order divided differences are given by

\[
f[x, y, z] = \frac{f[x, y] - f[y, z]}{x - z}.
\]

Suppose \(f \) is twice continuously differentiable. By the mean value theorem, there is a \(c \) between \(x \) and \(y \) such that \(f[x, y] = f'(c) \). Later on we show in class that \(f[x, y, z] = \frac{1}{2}f''(d) \), where \(d \) is some (unknown) point in the smallest interval containing \(x, y, \) and \(z \).

1. Suppose we apply the secant method, which we can write as

\[
x_{n+1} = x_n - \frac{f(x_n)}{f[x_{n-1}, x_n]},
\]

and we obtain \(x_n \to s \), a solution of the equation of \(f(x) = 0 \). Show that the secant equation (1) is equivalent to

\[
x_{n+1} - s = (x_n - s)(x_{n-1} - s) \frac{f[x_{n-1}, x_n, s]}{f[x_{n-1}, x_n]}.\]

(You may find it easiest to start with (2) and work toward (1).)

2. Show that if \(f'(s) \neq 0 \) and \(f''(s) \neq 0 \), then there is a nonzero constant \(M \) such that

\[
\lim_{n \to \infty} \frac{x_{n+1} - s}{(x_n - s)(x_{n-1} - s)} = M.
\]

3. Assume the secant method is convergent of order \(k \), i.e.

\[
\lim_{n \to \infty} \frac{x_{n+1} - s}{(x_n - s)^k} = C
\]
for some nonzero C and some $k \geq 1$. We wish to determine k. Using (3) and (4) together, show $k^2 - k - 1 = 0$. Conclude that $k = (1 + \sqrt{5})/2 \approx 1.62$.

This argument is not quite airtight. We have not shown that the secant method is convergent of order k. We have shown that if it is convergent of order k for some k, then that number k must equal $(1 + \sqrt{5})/2$.