ERRATA
Fundamentals of Matrix Computations, Second Edition
David S. Watkins
John Wiley and Sons, 2002
September 11, 2009

This list does not include minor spelling and grammatical errors that the reader can easily diagnose. I have tried to restrict the list mainly to mathematical typos and other items that could cause confusion.

p. 6 In Exercise 1.1.10, the code should read as follows:

```matlab
b = zeros(n,1);
for j = 1:n
    for i = 1:n
        b(i) = b(i) + A(i,j)*x(j);
    end
end
```

p. 42 On the last line of (1.4.28), the \(\tilde{R} \) should be \(\hat{R} \).

p. 64 In Example 1.6.2, the Bucky Ball has 90 edges, not 30.

p. 71 On lines 3 and 5, the equation \(\hat{A}x = b \) should be \(\hat{A}x = \hat{b} \).

p. 72 In both arrays on this page, the entry \(a_{n2}^{(2)} \) should be \(a_{n2}^{(1)} \).

p. 89 In the expression for \(A^{(1)} \), the entry \(a_{n2}^{(2)} \) should be \(a_{n2}^{(1)} \).

p. 113 The first line of the proof of Theorem 2.1.7 should read as follows: It suffices to show that \(\|x + y\|_2^2 \leq (\|x\|_2 + \|y\|_2)^2 \).

p. 134 On line 2, change “nonsingular” to “singular.”

p. 143 The equation \(\text{fl}(x/y) = (x/y)(1+\epsilon) \) at mid page should be \(\text{fl}(\hat{x}/\hat{y}) = (x/y)(1+\epsilon) \).

p. 147 In at least five places on this page, especially in Exercise 2.5.6, the symbol \(r \) should be \(\hat{r} \). Aside from that, the equation \(\hat{r} = b - \hat{A}\hat{x} \) in Exercise 2.5.6 should read \(\hat{r} = b - \hat{A}\hat{x} \).

p. 152 On line 1, \(.833 \times 10^1 \) should be \(.833 \times 10^{-1} \).

p. 159 In Theorem 2.7.2, the matrix \(G \) is \(n \times n \).

pp. 168–169 In the MATLAB code in Exercise 2.7.25, the lower-case \(a \) should be an upper-case \(A \) in two places.
p. 196 On the third line of the proof of Theorem 3.2.30, the equation \(\gamma = 1/\| u \|_2^2 \) should be \(\gamma = 2/\| u \|_2^2 \).

p. 198 In Exercise 3.2.33, show further that \(1 \leq \| u \|_2 \leq 2 \).

p. 210 In Exercise 3.2.68, the scalar \(\gamma \) in the definition of the reflector \(Q_i \) should have a subscript: \(Q_i = I - \gamma_i u_i u_i^T \).

p. 216 In part (a) of Exercise 3.3.10, in the MATLAB code, change \(\text{eye}(m) \) to \(\text{eye}(n) \).

p. 229 The third line of algorithm (3.4.23) should be \(\tilde{r}_{ik} \leftarrow \langle v_{k(i-1)}, \tilde{q}_i \rangle \).

p. 246 In part (b) of Exercise 3.5.26, assume that the matrices \(A \) and \(B \) have full rank.

p. 262 On the bottom half of the page, the definition of right and left singular vectors is backward. The columns of \(U \) are left singular vectors, and the columns of \(V \) are right singular vectors.

p. 265 In part (c) of Exercise 4.1.17, in the equation \(\sigma_1 = \| Au_1 \|_2 \), change the \(u_1 \) to a \(v_1 \). Earlier in the same line, I wish I'd used the symbol \(v \) instead of \(u \) in the max.

p. 267 In the second line after the second diagram, change \(A \) to \(A^{-1} \).

p. 276 In an equation in the middle of page, insert the vector \(\begin{bmatrix} \hat{y} \\ z \end{bmatrix} \) in the appropriate place to get
\[
\begin{bmatrix}
\hat{c} - \hat{\Sigma} \hat{y} \\
\hat{d}
\end{bmatrix} = \begin{bmatrix}
\hat{c} \\
\hat{d}
\end{bmatrix} - \begin{bmatrix}
\hat{\Sigma} \\
0
\end{bmatrix} \begin{bmatrix}
\hat{y} \\
z
\end{bmatrix}.
\]

Also, in the immediately preceding line, change \(\hat{r} \) to \(\hat{y} \).

p. 315 Just after (5.3.3), change \(| \lambda_2/\lambda_1 | \to 0 \) to \(| \lambda_2/\lambda_1 |^j \to 0 \).

p. 342 At the end of Exercise 5.4.27, change \(\| B \|_2 \) to \(\| \delta B \|_2 \) to get “... since \(\| \delta B \|_2 \) is (asymptotically) proportional ...”

p. 361 In the third line after displayed matrix \(A_m \), insert the word if: “More precisely, if \(| \lambda_i | > | \lambda_{i+1} | \ldots \)”

p. 369 In Exercise 5.6.25, \(R_1 \) is incorrect. It should be
\[
R_1 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

p. 371 In part (b) of Exercise 5.6.27, in the formula for \(t \), the radical in the denominator should be \(\sqrt{1 + \tilde{t}^2} \). (The \(\tilde{t} \) should be squared.)
p. 415 In the third line of the proof of Theorem 6.1.3, change span\{x_1, \ldots, x_k\} \in \mathcal{S}

\begin{align*}
\text{to span}\{x_1, \ldots, x_k\} = \mathcal{S}.
\end{align*}

p. 416 At the end of the fifth line of the proof of Theorem 6.1.6, change \(\mathbb{F}^n \) to \(\mathbb{F} \).

p. 423 On the third line from the bottom, change \(\mathbb{F}^{n \times n} \) to \(\mathbb{F}^n \).

p. 476 Two lines before (6.6.1) change \(\| \delta A_2 \| / \| A \|_2 = \epsilon \) to \(\| \delta A \|_2 / \| A \|_2 = \epsilon \).

p. 482 On the bottom line and five lines above, change \(\tilde{l}_j = l_j \delta_{j-1} / \delta_j \) to \(\tilde{l}_j = l_j \delta_j / \delta_{j+1} \).

p. 531 In Example 7.2.3, the iterates are incorrect and should be replaced by

\begin{align*}
x^{(10)} = \begin{bmatrix} 3.902 \\ 2.899 \\ 1.914 \\ 0.935 \end{bmatrix}, \quad x^{(20)} = \begin{bmatrix} 3.9965 \\ 2.9965 \\ 1.9970 \\ 0.9977 \end{bmatrix}, \quad x^{(30)} = \begin{bmatrix} 3.99988 \\ 2.99987 \\ 1.99989 \\ 0.99992 \end{bmatrix},
\end{align*}

and the statement “\(x^{(50)} \) agrees with . . . ” should be replaced by “\(x^{(80)} \) agrees with . . . ”

I thank Jennifer Burman, Cristina Cacho, Inderjit Dhillon, Jim Edwards, Ian Gladwell, Jeff Haag, Katherine Hegewisch, David Holland, Yan-Fei Jing, and Andy Loveless for spotting errors.